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Model Setup

Data: Samples Zn1 := (Z1, . . . , Zn) ∈ Zn are drawn from an
unknown distribution P.

Loss Function: L : Rp×Zn→R is convex and differentiable.

Goal: Find estimate θ̂ of θ∗ ∈ Rp where

θ∗ = arg min
θ∈Rp

EP
[
L(θ;Zn1 )

]
.

Example: Linear models

yi = x>i θ
∗ + ei,

where Zi = (xi, yi) and L(θ;Zn1 ) = 1
2n‖y −Xθ‖22.
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Model Setup

Identify θ∗ ∈ Rp with the vertices of a known graph
G = (V,E) where |V | = p.

Discrete gradient operator ∇G : Rp→R|E|:

∇Gθ =
(
θi − θj : (i, j) ∈ E

)
.

Assume the gradient sparsity

s∗ := ‖∇Gθ∗‖0

is small relative to |E|.

Find graph-sparse θ̂ with small L(θ)
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Motivating Examples

Statistical changepoint detection

Figure 1: History of visits on a website for 1000 days.



Motivating Examples

Image denoising and compressed sensing

Figure 2: Four cameraman images.



Motivating Examples

Anomaly detection

Figure 3: Eight common diseases observed in the chest radiographs. Retrieved

from https://doi.org/10.1186/s12938-018-0544-y. Copyright by Qin, C., Yao,

D., Shi, Y. et al. Computer-aided detection in chest radiography based on

artificial intelligence: a survey. BioMed Eng OnLine 17, 113 (2018).



Tree-Projected Gradient Descent

Estimation guarantee for the linear model is

‖θ̂ − θ∗‖2 ≤ C ·
√
s∗

n
log
(

1 +
p

s∗

)
↓

independent of G

Comparison with convex approaches:

Well conditioned discrete gradient matrix ∇G ∈ R|E|×p
(Hütter and Rigollet ’16)
For line graph X = I

‖θ̂ − θ∗‖2 ≤
√
s∗ log (p)

Improved rate with minimum spacing requirement between
changepoints of θ∗ (Dalalyan et al. ’17, Guntuboyina et al.
’17)
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Tree-Projected Gradient Descent

Idea: non-convex projected gradient descent

IHT (Blumensath and Davies ’08 and Jain et al. ’14), CoSaMP (Needell
and Tropp ’09), HTP (Foucart ’11).

θt = argmin
θ∈Rp:‖∇Gθ‖0≤S

‖θ − ut‖2,

where ut = θt−1 − η · ∇L(θt−1;Z
n
1 ).

Performing projection step is intractable in general!

Approximate G with a tree Tt at each iteration
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Tree-Projected Gradient Descent

Step 1: Tree Construction
Construct a sequence of spanning trees T1, T2, . . . with
maximum degree dmax such that θ∗ remains gradient-sparse
over these trees

Step 2: Projected Gradient Approximation
Perform a single projected gradient descent step on each tree
in this sequence over a discrete domain



Tree Construction



Tree Construction

Lemma (Padilla et al ’17)

Let T be as constructed above. Then T is a tree on V with
maximum degree ≤ dmax. Furthermore, for any θ ∈ Rp,

‖∇Tθ‖0 ≤ 2‖∇Gθ‖0.

The computational complexity for constructing T is O(|E|).
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Projected Gradient Approximation

Iteration step

θt ≈ arg min
θ∈Rp:‖∇Ttθ‖0≤S

‖θ − ut‖2,

where ut = θt−1 − η · ∇L(θt−1;Z
n
1 ).

Optimize over θ in a discrete domain ∆p rather than Rp where

∆ :=
{

∆min,∆min + δ,∆min + 2δ, . . . ,∆max − δ,∆max

}
.



Computational Complexity for Linear Model

Total computational complexity for the linear model:

O
((

np+ p2
√
n(s∗)dmax−3/2

)
log np

)



Cut-Restricted Strong Convexity/Smoothness

Definition (cRSC and cRSS)

A differentiable function f : Rp→R satisfies cut-restricted
strong convexity (cRSC) and smoothness (cRSS) with respect
to (T1, T2), at sparsity level S and with constants α,L > 0, if the
following holds: For any θ1,θ2 ∈ K := K1 +K2 where Ki is the
subspace of all S-gradient-sparse vectors with respect to Ti,

f(θ2) ≥ f(θ1) + 〈θ2 − θ1,∇f(θ1)〉+
α

2
‖θ2 − θ1‖22 (cRSC),

f(θ2) ≤ f(θ1) + 〈θ2 − θ1,∇f(θ1)〉+
L

2
‖θ2 − θ1‖22 (cRSS).



Cut-Projected Gradient Bound

Definition (cPGB)

A differentiable function f : Rp→R has a cut-projected gradient
bound (cPGB) of Φ(S) with respect to (T1, T2), at a point
θ∗ ∈ Rp and sparsity level S, if: For any K := K1 +K2 where Ki

is the subspace of all S-gradient-sparse vectors with respect to Ti,

‖PK∇f(θ∗)‖2 ≤ Φ(S).

Lemma (cPGB)

If w>∇L(θ∗;Zn1 ) is σ2/n-subgaussian for any w ∈ K. Then

Φ(S) � σ
√

S
n log

(
1 + p

S

)
with high probability.
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Main Theorem

Theorem (Tree-PGD Deterministic Estimation Guarantee)

Suppose ‖∇Gθ∗‖0 ≤ s∗. Set S = κs∗ for a constant κ. Suppose,
for all 1 ≤ t ≤ τ and (Tt−1, Tt), that

1 L(· ;Zn
1 ) satisfies cRSC and cRSS with constants α,L > 0 at

sparsity level S.

2 L(· ;Zn
1 ) has the cPGB Φ(S) at the point θ∗ and sparsity level S.

Let Γ ≈
√

1− α/L · (1 +
√

2dmax/κ) and suppose κ is large
enough such that Γ < 1. Then the τ th iterate θτ of tree-PGD
satisfies

‖θτ − θ∗‖2 . Γτ · ‖θ∗‖2 + Φ(S).

For θ̂ ≡ θτ and τ large enough,this yields

‖θ̂ − θ∗‖ . Φ(S).



Main Proof Idea

Construct K 3 θt,θt−1,θ
∗, gradient-sparsity ≈ S + 2s∗, applying

‖θt − θ∗‖2 ≤ ‖PKut − θt‖2 + ‖PKut − θ∗‖2
≤ ‖PKut − θt‖2 + ‖PKut − v‖2 + ‖v − θ∗‖2,

ut = θt−1 − 1
L∇L(θt−1;Z

n
1 ) and v = arg minθ∈K L(θ;Zn1 )

Step 1. Inspired by Jain et al. ’14:

‖PKut − θt‖2 ≤ γ · ‖PKut − θ∗‖2, γ :=
√

2dmax/κ.

Step 2. Property of gradient mapping and cRSC/cRSS give

‖PKut − v‖2 ≤
√

1− α/L · ‖θt−1 − v‖2
≤
√

1− α/L · (‖θt−1 − θ∗‖2 + ‖v − θ∗‖2).

Step 3. cRSC and cPGB give ‖v − θ∗‖2 ≤ CΦ(S).

Combining above gives ‖θt − θ∗‖2 ≤ Γ · ‖θt−1 − θ∗‖2 + C ′Φ(S).
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Simulations

Figure 4: The true image θ∗

with values between −0.5 (blue)
and 0.9 (red) on a 30× 30
lattice graph G.

Figure 5: Noisy image 1
nX
>y,

for y = Xθ∗ + e with Gaussian
design and noise standard
deviation σ = 1.5.



Simulations

Figure 6: Best total-variation penalized
estimate θ̂.

Figure 7: Best tree-PGD estimate θ̂ for
a fixed line graph Tt in every iteration
(zig-zagging vertically through G).

Figure 8: Best tree-PGD estimate θ̂
for a different random tree with
dmax = 2 in each iteration.

Figure 9: Best tree-PGD estimate θ̂
for a different random tree with
dmax = 4 in each iteration.



Conclusions

Tree-PGD achieves strong statistical guarantees in regression
models, without requiring a matching between the underlying
graph and design matrix;

Tree-PGD is a polynomial-time algorithm which approximately
solves a non-convex objective;

Tree-PGD allows for a different random tree in each iteration,
which better targets the average sparsity.

Thank you!
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