Tree-projected gradient descent for estimating gradient-sparse parameters on graphs

Sheng Xu Zhou Fan Sahand Negahban
Yale University
Department of Statistics and Data Science

COLT 2020

Model Setup

- Data: Samples $Z_{1}^{n}:=\left(Z_{1}, \ldots, Z_{n}\right) \in \mathcal{Z}^{n}$ are drawn from an unknown distribution \mathcal{P}.
- Loss Function: $\mathcal{L}: \mathbb{R}^{p} \times \mathcal{Z}^{n} \rightarrow \mathbb{R}$ is convex and differentiable.

Model Setup

- Data: Samples $Z_{1}^{n}:=\left(Z_{1}, \ldots, Z_{n}\right) \in \mathcal{Z}^{n}$ are drawn from an unknown distribution \mathcal{P}.
- Loss Function: $\mathcal{L}: \mathbb{R}^{p} \times \mathcal{Z}^{n} \rightarrow \mathbb{R}$ is convex and differentiable.
- Goal: Find estimate $\hat{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}^{*} \in \mathbb{R}^{p}$ where

$$
\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta} \in \mathbb{R}^{p}}{\arg \min } \mathbb{E}_{\mathcal{P}}\left[\mathcal{L}\left(\boldsymbol{\theta} ; Z_{1}^{n}\right)\right]
$$

Model Setup

- Data: Samples $Z_{1}^{n}:=\left(Z_{1}, \ldots, Z_{n}\right) \in \mathcal{Z}^{n}$ are drawn from an unknown distribution \mathcal{P}.
- Loss Function: $\mathcal{L}: \mathbb{R}^{p} \times \mathcal{Z}^{n} \rightarrow \mathbb{R}$ is convex and differentiable.
- Goal: Find estimate $\widehat{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}^{*} \in \mathbb{R}^{p}$ where

$$
\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta} \in \mathbb{R}^{p}}{\arg \min } \mathbb{E}_{\mathcal{P}}\left[\mathcal{L}\left(\boldsymbol{\theta} ; Z_{1}^{n}\right)\right] .
$$

- Example: Linear models

$$
y_{i}=\mathbf{x}_{i}^{\top} \boldsymbol{\theta}^{*}+e_{i},
$$

where $Z_{i}=\left(\mathbf{x}_{i}, y_{i}\right)$ and $\mathcal{L}\left(\boldsymbol{\theta} ; Z_{1}^{n}\right)=\frac{1}{2 n}\|\mathbf{y}-\mathbf{X} \boldsymbol{\theta}\|_{2}^{2}$.

Model Setup

- Identify $\boldsymbol{\theta}^{*} \in \mathbb{R}^{p}$ with the vertices of a known graph $G=(V, E)$ where $|V|=p$.

Model Setup

- Identify $\boldsymbol{\theta}^{*} \in \mathbb{R}^{p}$ with the vertices of a known graph $G=(V, E)$ where $|V|=p$.
- Discrete gradient operator $\nabla_{G}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{|E|}$:

$$
\nabla_{G} \boldsymbol{\theta}=\left(\theta_{i}-\theta_{j}:(i, j) \in E\right)
$$

Model Setup

- Identify $\boldsymbol{\theta}^{*} \in \mathbb{R}^{p}$ with the vertices of a known graph $G=(V, E)$ where $|V|=p$.
- Discrete gradient operator $\nabla_{G}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{|E|}$:

$$
\nabla_{G} \boldsymbol{\theta}=\left(\theta_{i}-\theta_{j}:(i, j) \in E\right)
$$

- Assume the gradient sparsity

$$
s^{*}:=\left\|\nabla_{G} \boldsymbol{\theta}^{*}\right\|_{0}
$$

is small relative to $|E|$.

Model Setup

- Identify $\boldsymbol{\theta}^{*} \in \mathbb{R}^{p}$ with the vertices of a known graph $G=(V, E)$ where $|V|=p$.
- Discrete gradient operator $\nabla_{G}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{|E|}$:

$$
\nabla_{G} \boldsymbol{\theta}=\left(\theta_{i}-\theta_{j}:(i, j) \in E\right)
$$

- Assume the gradient sparsity

$$
s^{*}:=\left\|\nabla_{G} \boldsymbol{\theta}^{*}\right\|_{0}
$$

is small relative to $|E|$.

- Find graph-sparse $\widehat{\boldsymbol{\theta}}$ with small $\mathcal{L}(\boldsymbol{\theta})$

Motivating Examples

- Statistical changepoint detection

Figure 1: History of visits on a website for 1000 days.

Motivating Examples

- Image denoising and compressed sensing

Figure 2: Four cameraman images.

Motivating Examples

- Anomaly detection

Infiltration

Mass

Atelectasis

Effusion

Nodule

Cardiomegaly

Pneumothorax

Figure 3: Eight common diseases observed in the chest radiographs. Retrieved from https://doi.org/10.1186/s12938-018-0544-y. Copyright by Qin, C., Yao, D., Shi, Y. et al. Computer-aided detection in chest radiography based on artificial intelligence: a survey. BioMed Eng OnLine 17, 113 (2018).

Tree-Projected Gradient Descent

- Estimation guarantee for the linear model is

$$
\begin{gathered}
\left\|\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2} \leq C \cdot \sqrt{\frac{s^{*}}{n} \log \left(1+\frac{p}{s^{*}}\right)} \\
\downarrow \\
\text { independent of } G
\end{gathered}
$$

Tree-Projected Gradient Descent

- Estimation guarantee for the linear model is

$$
\begin{gathered}
\left\|\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2} \leq C \cdot \sqrt{\frac{s^{*}}{n} \log \left(1+\frac{p}{s^{*}}\right)} \\
\downarrow \\
\text { independent of } G
\end{gathered}
$$

- Comparison with convex approaches:
- Well conditioned discrete gradient matrix $\nabla_{G} \in \mathbb{R}^{|E| \times p}$ (Hütter and Rigollet '16)
- For line graph $\mathbf{X}=\mathbf{I}$

$$
\left\|\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2} \leq \sqrt{s^{*} \log (p)}
$$

- Improved rate with minimum spacing requirement between changepoints of $\boldsymbol{\theta}^{*}$ (Dalalyan et al. '17, Guntuboyina et al. '17)

Tree-Projected Gradient Descent

- Idea: non-convex projected gradient descent
- IHT (Blumensath and Davies '08 and Jain et al. '14), CoSaMP (Needell and Tropp '09), HTP (Foucart '11).

$$
\boldsymbol{\theta}_{t}=\underset{\boldsymbol{\theta} \in \mathbb{R}^{p}:\left\|\nabla_{G} \boldsymbol{\theta}\right\|_{0} \leq S}{\arg \min }\left\|\boldsymbol{\theta}-\mathbf{u}_{t}\right\|_{2}
$$

where $\mathbf{u}_{t}=\boldsymbol{\theta}_{t-1}-\eta \cdot \nabla \mathcal{L}\left(\boldsymbol{\theta}_{t-1} ; Z_{1}^{n}\right)$.

Tree-Projected Gradient Descent

- Idea: non-convex projected gradient descent
- IHT (Blumensath and Davies '08 and Jain et al. '14), CoSaMP (Needell and Tropp '09), HTP (Foucart '11).

$$
\boldsymbol{\theta}_{t}=\underset{\boldsymbol{\theta} \in \mathbb{R}^{p}:\left\|\nabla_{G} \boldsymbol{\theta}\right\|_{0} \leq S}{\arg \min }\left\|\boldsymbol{\theta}-\mathbf{u}_{t}\right\|_{2},
$$

where $\mathbf{u}_{t}=\boldsymbol{\theta}_{t-1}-\eta \cdot \nabla \mathcal{L}\left(\boldsymbol{\theta}_{t-1} ; Z_{1}^{n}\right)$.

- Performing projection step is intractable in general!

Tree-Projected Gradient Descent

- Idea: non-convex projected gradient descent
- IHT (Blumensath and Davies '08 and Jain et al. '14), CoSaMP (Needell and Tropp '09), HTP (Foucart '11).

$$
\boldsymbol{\theta}_{t}=\underset{\boldsymbol{\theta} \in \mathbb{R}^{\boldsymbol{P}}:\left\|\nabla_{G} \boldsymbol{\theta}\right\|_{0} \leq S}{\arg \min }\left\|\boldsymbol{\theta}-\mathbf{u}_{t}\right\|_{2},
$$

where $\mathbf{u}_{t}=\boldsymbol{\theta}_{t-1}-\eta \cdot \nabla \mathcal{L}\left(\boldsymbol{\theta}_{t-1} ; Z_{1}^{n}\right)$.

- Performing projection step is intractable in general!
- Approximate G with a tree T_{t} at each iteration

Tree-Projected Gradient Descent

- Step 1: Tree Construction

Construct a sequence of spanning trees T_{1}, T_{2}, \ldots with maximum degree $d_{\text {max }}$ such that $\boldsymbol{\theta}^{*}$ remains gradient-sparse over these trees

- Step 2: Projected Gradient Approximation

Perform a single projected gradient descent step on each tree in this sequence over a discrete domain

Tree Construction

Tree Construction

Tree Construction

Lemma (Padilla et al '17)

Let T be as constructed above. Then T is a tree on V with maximum degree $\leq d_{\max }$. Furthermore, for any $\boldsymbol{\theta} \in \mathbb{R}^{p}$,

$$
\left\|\nabla_{T} \boldsymbol{\theta}\right\|_{0} \leq 2\left\|\nabla_{G} \boldsymbol{\theta}\right\|_{0}
$$

The computational complexity for constructing T is $O(|E|)$.

Projected Gradient Approximation

- Iteration step

$$
\boldsymbol{\theta}_{t} \approx \underset{\boldsymbol{\theta} \in \mathbb{R}^{p}:\left\|\nabla_{T_{t}} \boldsymbol{\theta}\right\|_{0} \leq S}{\arg \min }\left\|\boldsymbol{\theta}-\mathbf{u}_{t}\right\|_{2}
$$

where $\mathbf{u}_{t}=\boldsymbol{\theta}_{t-1}-\eta \cdot \nabla \mathcal{L}\left(\boldsymbol{\theta}_{t-1} ; Z_{1}^{n}\right)$.

- Optimize over $\boldsymbol{\theta}$ in a discrete domain Δ^{p} rather than \mathbb{R}^{p} where

$$
\Delta:=\left\{\Delta_{\min }, \Delta_{\min }+\delta, \Delta_{\min }+2 \delta, \ldots, \Delta_{\max }-\delta, \Delta_{\max }\right\} .
$$

Computational Complexity for Linear Model

Total computational complexity for the linear model:

$$
O\left(\left(n p+p^{2} \sqrt{n}\left(s^{*}\right)^{d_{\max }-3 / 2}\right) \log n p\right)
$$

Cut-Restricted Strong Convexity/Smoothness

Definition (cRSC and cRSS)

A differentiable function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ satisfies cut-restricted strong convexity (cRSC) and smoothness (cRSS) with respect to (T_{1}, T_{2}), at sparsity level S and with constants $\alpha, L>0$, if the following holds: For any $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2} \in K:=K_{1}+K_{2}$ where K_{i} is the subspace of all S-gradient-sparse vectors with respect to T_{i},

$$
\begin{aligned}
& f\left(\boldsymbol{\theta}_{2}\right) \geq f\left(\boldsymbol{\theta}_{1}\right)+\left\langle\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{1}, \nabla f\left(\boldsymbol{\theta}_{1}\right)\right\rangle+\frac{\alpha}{2}\left\|\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{1}\right\|_{2}^{2} \quad(\mathrm{cRSC}) \\
& f\left(\boldsymbol{\theta}_{2}\right) \leq f\left(\boldsymbol{\theta}_{1}\right)+\left\langle\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{1}, \nabla f\left(\boldsymbol{\theta}_{1}\right)\right\rangle+\frac{L}{2}\left\|\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{1}\right\|_{2}^{2} \quad(\mathrm{cRSS}) .
\end{aligned}
$$

Cut-Projected Gradient Bound

Definition (cPGB)

A differentiable function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ has a cut-projected gradient bound (cPGB) of $\Phi(S)$ with respect to $\left(T_{1}, T_{2}\right)$, at a point $\boldsymbol{\theta}^{*} \in \mathbb{R}^{p}$ and sparsity level S, if: For any $K:=K_{1}+K_{2}$ where K_{i} is the subspace of all S-gradient-sparse vectors with respect to T_{i},

$$
\left\|\mathbf{P}_{K} \nabla f\left(\boldsymbol{\theta}^{*}\right)\right\|_{2} \leq \Phi(S)
$$

Cut-Projected Gradient Bound

Definition (cPGB)

A differentiable function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ has a cut-projected gradient bound (cPGB) of $\Phi(S)$ with respect to $\left(T_{1}, T_{2}\right)$, at a point $\boldsymbol{\theta}^{*} \in \mathbb{R}^{p}$ and sparsity level S, if: For any $K:=K_{1}+K_{2}$ where K_{i} is the subspace of all S-gradient-sparse vectors with respect to T_{i},

$$
\left\|\mathbf{P}_{K} \nabla f\left(\boldsymbol{\theta}^{*}\right)\right\|_{2} \leq \Phi(S)
$$

Lemma (cPGB)

If $\mathbf{w}^{\top} \nabla \mathcal{L}\left(\boldsymbol{\theta}^{*} ; Z_{1}^{n}\right)$ is σ^{2} / n-subgaussian for any $\mathbf{w} \in K$. Then
$\Phi(S) \asymp \sigma \sqrt{\frac{S}{n} \log \left(1+\frac{p}{S}\right)}$ with high probability.

Main Theorem

Theorem (Tree-PGD Deterministic Estimation Guarantee)

Suppose $\left\|\nabla_{G} \boldsymbol{\theta}^{*}\right\|_{0} \leq s^{*}$. Set $S=\kappa s^{*}$ for a constant κ. Suppose, for all $1 \leq t \leq \tau$ and $\left(T_{t-1}, T_{t}\right)$, that
(1) $\mathcal{L}\left(\cdot ; Z_{1}^{n}\right)$ satisfies $c R S C$ and $c R S S$ with constants $\alpha, L>0$ at sparsity level S.
(2) $\mathcal{L}\left(\cdot ; Z_{1}^{n}\right)$ has the $c P G B \Phi(S)$ at the point $\boldsymbol{\theta}^{*}$ and sparsity level S.

Let $\Gamma \approx \sqrt{1-\alpha / L} \cdot\left(1+\sqrt{2 d_{\max } / \kappa}\right)$ and suppose κ is large enough such that $\Gamma<1$. Then the $\tau^{\text {th }}$ iterate $\boldsymbol{\theta}_{\tau}$ of tree- $P G D$ satisfies

$$
\left\|\boldsymbol{\theta}_{\tau}-\boldsymbol{\theta}^{*}\right\|_{2} \lesssim \Gamma^{\tau} \cdot\left\|\boldsymbol{\theta}^{*}\right\|_{2}+\Phi(S)
$$

For $\hat{\boldsymbol{\theta}} \equiv \boldsymbol{\theta}_{\tau}$ and τ large enough, this yields

$$
\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\| \lesssim \Phi(S)
$$

Main Proof Idea

Construct $K \ni \boldsymbol{\theta}_{t}, \boldsymbol{\theta}_{t-1}, \boldsymbol{\theta}^{*}$, gradient-sparsity $\approx S+2 s^{*}$, applying

$$
\begin{aligned}
\left\|\boldsymbol{\theta}_{t}-\boldsymbol{\theta}^{*}\right\|_{2} & \leq\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2}+\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}^{*}\right\|_{2} \\
& \leq\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2}+\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\mathbf{v}\right\|_{2}+\left\|\mathbf{v}-\boldsymbol{\theta}^{*}\right\|_{2}
\end{aligned}
$$

$$
\mathbf{u}_{t}=\boldsymbol{\theta}_{t-1}-\frac{1}{L} \nabla \mathcal{L}\left(\boldsymbol{\theta}_{t-1} ; Z_{1}^{n}\right) \text { and } \mathbf{v}=\arg \min _{\boldsymbol{\theta} \in K} \mathcal{L}\left(\boldsymbol{\theta} ; Z_{1}^{n}\right)
$$

Main Proof Idea

Construct $K \ni \boldsymbol{\theta}_{t}, \boldsymbol{\theta}_{t-1}, \boldsymbol{\theta}^{*}$, gradient-sparsity $\approx S+2 s^{*}$, applying

$$
\begin{aligned}
\left\|\boldsymbol{\theta}_{t}-\boldsymbol{\theta}^{*}\right\|_{2} & \leq\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2}+\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}^{*}\right\|_{2} \\
& \leq\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2}+\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\mathbf{v}\right\|_{2}+\left\|\mathbf{v}-\boldsymbol{\theta}^{*}\right\|_{2}
\end{aligned}
$$

$$
\mathbf{u}_{t}=\boldsymbol{\theta}_{t-1}-\frac{1}{L} \nabla \mathcal{L}\left(\boldsymbol{\theta}_{t-1} ; Z_{1}^{n}\right) \text { and } \mathbf{v}=\arg \min _{\boldsymbol{\theta} \in K} \mathcal{L}\left(\boldsymbol{\theta} ; Z_{1}^{n}\right)
$$

Step 1. Inspired by Jain et al. '14:

$$
\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2} \leq \gamma \cdot\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}^{*}\right\|_{2}, \quad \gamma:=\sqrt{2 d_{\max } / \kappa}
$$

Main Proof Idea

Construct $K \ni \boldsymbol{\theta}_{t}, \boldsymbol{\theta}_{t-1}, \boldsymbol{\theta}^{*}$, gradient-sparsity $\approx S+2 s^{*}$, applying

$$
\begin{aligned}
&\left\|\boldsymbol{\theta}_{t}-\boldsymbol{\theta}^{*}\right\|_{2} \leq\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2}+\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}^{*}\right\|_{2} \\
& \leq\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2}+\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\mathbf{v}\right\|_{2}+\left\|\mathbf{v}-\boldsymbol{\theta}^{*}\right\|_{2}, \\
& \mathbf{u}_{t}=\boldsymbol{\theta}_{t-1}-\frac{1}{L} \nabla \mathcal{L}\left(\boldsymbol{\theta}_{t-1} ; Z_{1}^{n}\right) \text { and } \mathbf{v}=\arg \min _{\boldsymbol{\theta} \in K} \mathcal{L}\left(\boldsymbol{\theta} ; Z_{1}^{n}\right)
\end{aligned}
$$

Step 1. Inspired by Jain et al. '14:

$$
\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2} \leq \gamma \cdot\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}^{*}\right\|_{2}, \quad \gamma:=\sqrt{2 d_{\max } / \kappa}
$$

Step 2. Property of gradient mapping and cRSC/cRSS give

$$
\begin{aligned}
\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\mathbf{v}\right\|_{2} & \leq \sqrt{1-\alpha / L} \cdot\left\|\boldsymbol{\theta}_{t-1}-\mathbf{v}\right\|_{2} \\
& \leq \sqrt{1-\alpha / L} \cdot\left(\left\|\boldsymbol{\theta}_{t-1}-\boldsymbol{\theta}^{*}\right\|_{2}+\left\|\mathbf{v}-\boldsymbol{\theta}^{*}\right\|_{2}\right)
\end{aligned}
$$

Main Proof Idea

Construct $K \ni \boldsymbol{\theta}_{t}, \boldsymbol{\theta}_{t-1}, \boldsymbol{\theta}^{*}$, gradient-sparsity $\approx S+2 s^{*}$, applying

$$
\begin{aligned}
&\left\|\boldsymbol{\theta}_{t}-\boldsymbol{\theta}^{*}\right\|_{2} \leq\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2}+\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}^{*}\right\|_{2} \\
& \leq\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2}+\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\mathbf{v}\right\|_{2}+\left\|\mathbf{v}-\boldsymbol{\theta}^{*}\right\|_{2}, \\
& \mathbf{u}_{t}=\boldsymbol{\theta}_{t-1}-\frac{1}{L} \nabla \mathcal{L}\left(\boldsymbol{\theta}_{t-1} ; Z_{1}^{n}\right) \text { and } \mathbf{v}=\arg \min _{\boldsymbol{\theta} \in K} \mathcal{L}\left(\boldsymbol{\theta} ; Z_{1}^{n}\right)
\end{aligned}
$$

Step 1. Inspired by Jain et al. '14:

$$
\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2} \leq \gamma \cdot\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}^{*}\right\|_{2}, \quad \gamma:=\sqrt{2 d_{\max } / \kappa}
$$

Step 2. Property of gradient mapping and cRSC/cRSS give

$$
\begin{aligned}
\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\mathbf{v}\right\|_{2} & \leq \sqrt{1-\alpha / L} \cdot\left\|\boldsymbol{\theta}_{t-1}-\mathbf{v}\right\|_{2} \\
& \leq \sqrt{1-\alpha / L} \cdot\left(\left\|\boldsymbol{\theta}_{t-1}-\boldsymbol{\theta}^{*}\right\|_{2}+\left\|\mathbf{v}-\boldsymbol{\theta}^{*}\right\|_{2}\right)
\end{aligned}
$$

Step 3. cRSC and cPGB give $\left\|\mathbf{v}-\boldsymbol{\theta}^{*}\right\|_{2} \leq C \Phi(S)$.

Main Proof Idea

Construct $K \ni \boldsymbol{\theta}_{t}, \boldsymbol{\theta}_{t-1}, \boldsymbol{\theta}^{*}$, gradient-sparsity $\approx S+2 s^{*}$, applying

$$
\begin{aligned}
&\left\|\boldsymbol{\theta}_{t}-\boldsymbol{\theta}^{*}\right\|_{2} \leq\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2}+\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}^{*}\right\|_{2} \\
& \leq\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2}+\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\mathbf{v}\right\|_{2}+\left\|\mathbf{v}-\boldsymbol{\theta}^{*}\right\|_{2}, \\
& \mathbf{u}_{t}=\boldsymbol{\theta}_{t-1}-\frac{1}{L} \nabla \mathcal{L}\left(\boldsymbol{\theta}_{t-1} ; Z_{1}^{n}\right) \text { and } \mathbf{v}=\arg \min _{\boldsymbol{\theta} \in K} \mathcal{L}\left(\boldsymbol{\theta} ; Z_{1}^{n}\right)
\end{aligned}
$$

Step 1. Inspired by Jain et al. '14:

$$
\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}_{t}\right\|_{2} \leq \gamma \cdot\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\boldsymbol{\theta}^{*}\right\|_{2}, \quad \gamma:=\sqrt{2 d_{\max } / \kappa}
$$

Step 2. Property of gradient mapping and cRSC/cRSS give

$$
\begin{aligned}
\left\|\mathbf{P}_{K} \mathbf{u}_{t}-\mathbf{v}\right\|_{2} & \leq \sqrt{1-\alpha / L} \cdot\left\|\boldsymbol{\theta}_{t-1}-\mathbf{v}\right\|_{2} \\
& \leq \sqrt{1-\alpha / L} \cdot\left(\left\|\boldsymbol{\theta}_{t-1}-\boldsymbol{\theta}^{*}\right\|_{2}+\left\|\mathbf{v}-\boldsymbol{\theta}^{*}\right\|_{2}\right)
\end{aligned}
$$

Step 3. cRSC and cPGB give $\left\|\mathbf{v}-\boldsymbol{\theta}^{*}\right\|_{2} \leq C \Phi(S)$.
Combining above gives $\left\|\boldsymbol{\theta}_{t}-\boldsymbol{\theta}^{*}\right\|_{2} \leq \Gamma \cdot\left\|\boldsymbol{\theta}_{t-1}-\boldsymbol{\theta}^{*}\right\|_{2}+C^{\prime} \Phi(S)$.

Simulations

Figure 4: The true image $\boldsymbol{\theta}^{*}$ with values between -0.5 (blue) and $0.9(\mathrm{red})$ on a 30×30 lattice graph G.

Figure 5: Noisy image $\frac{1}{n} \mathbf{X}^{\top} \mathbf{y}$, for $\mathbf{y}=\mathbf{X} \boldsymbol{\theta}^{*}+\mathbf{e}$ with Gaussian design and noise standard deviation $\sigma=1.5$.

Simulations

Figure 6: Best total-variation penalized estimate $\widehat{\boldsymbol{\theta}}$.

Figure 8: Best tree-PGD estimate $\widehat{\boldsymbol{\theta}}$ for a different random tree with $d_{\text {max }}=2$ in each iteration.

Figure 7: Best tree-PGD estimate $\widehat{\boldsymbol{\theta}}$ for a fixed line graph T_{t} in every iteration (zig-zagging vertically through G).

Figure 9: Best tree-PGD estimate $\widehat{\boldsymbol{\theta}}$ for a different random tree with $d_{\text {max }}=4$ in each iteration.

Conclusions

- Tree-PGD achieves strong statistical guarantees in regression models, without requiring a matching between the underlying graph and design matrix;
- Tree-PGD is a polynomial-time algorithm which approximately solves a non-convex objective;
- Tree-PGD allows for a different random tree in each iteration, which better targets the average sparsity.

Conclusions

- Tree-PGD achieves strong statistical guarantees in regression models, without requiring a matching between the underlying graph and design matrix;
- Tree-PGD is a polynomial-time algorithm which approximately solves a non-convex objective;
- Tree-PGD allows for a different random tree in each iteration, which better targets the average sparsity.

Thank you!

